Obstructive sleep apnoea: accidents waiting to happen

Sleepiness or fatigue, defined as a reduced level of alertness during wake time, is a major causal factor in accidents and incidents. Melissa Hack looks at how and why a lack of sleep can seriously affect daily living.

Melissa Hack BSc(Hons) FRCP
Respiratory Physician and Lead Consultant, The Gwent Sleep Centre; Honorary Senior Lecturer in Sleep Medicine, University of Wales

Correspondence: Melissa Hack, Newport Chest Clinic, 129 Stow Hill, Newport, Wales NP20 4GA; tel: 01633 238201; fax: 01633 243250; email: Melissa.Hack@gwent.wales.nhs.uk

About 20–30% of fatal road traffic accidents in the UK are attributed to sleepiness. There is also a higher incidence of occupational accidents in people who, more who report sleepiness.

Research has shown that a recording of the electrical brain wave pattern of a person who is sleepy while driving a train shows periods of 20–30 s during which the brain waves show features consistent with a sleep pattern. However, at the time the individuals are apparently awake and operating the train. The time spent by a train driver in these microsleep periods is enough to travel a considerable distance, potentially passing a red light or signal, which could provide an explanation for incidents described as 'signal passed at danger' or SPAD.

Obstructive sleep apnoea syndrome

The sleep disorder OSAS is common, affecting up to 4% of adult males and 2% of adult females in the general population. OSAS is characterised by disordered breathing during sleep, which is usually associated with pauses and severe snoring, and excessive sleepiness during waking hours.

Breathing pauses or apnoeas are intermittent and recurrent leading to hypoxia, brain arousal and sleep fragmentation. These can occur between 400 and 500 times in one night, resulting in poor quality sleep and excessive daytime sleepiness.

When the patient’s history and an examination are suggestive of OSAS an overnight sleep investigation is usually recommended. This may be done at home or as an inpatient. During the investigation a variety of channels may be monitored ranging from simple oxygen saturation to full polysomnography, including electroencephalographic brain wave recordings, which allow sleep staging.

A diagnosis of OSAS can be based on a suggestive history, a positive sleep study and sleepiness during waking hours.

Measuring sleepiness

The presence of wake time sleepiness can be determined from the patient history and an attempt is often made to define this further using a scale or score.

The Epworth Sleepiness Scale is widely used. Patients are asked to rate their sleepiness on a scale of zero to three, in eight different situations; a score greater than nine indicates a tendency to increased sleepiness (Figure 1). However these are subjective scales that rely on self-reporting and therefore have limitations, particularly if the individual is worried about keeping their job and other possible repercussions. It may therefore be necessary to gain objective information in cases where an occupation requires a high level of alertness, such as pilots, train drivers and so on.

The driver of this wrecked car survived the crash and was found to have obstructive sleep apnoea syndrome (OSAS). Courtesy of The Sleep Apnoea Trust (SATA).
The information required is usually collected in specialist centres using a variety of daytime tests. Most commonly used are the Multiple Sleep Latency Test, which measures the propensity of an individual to fall asleep during four periods through the day, and the Maintenance of Wakefulness Test, which measures the ability to stay awake during four periods through the day.

Other laboratory tests include the Modified Maintenance of Wakefulness Test, Psychomotor Vigilance Task and different simulators. There is debate concerning the usefulness of these laboratory tests in determining the likelihood of an individual remaining alert in real-life situations.

Treatment options

There are a range of treatment modalities available and the choice will depend on the symptoms and severity of sleep fragmentation. The most effective therapy is called continuous positive airway pressure (CPAP), which has the advantage that use of the equipment can be monitored and compliance measured (Figure 2).

The CPAP machine provides air at a pressure via a facemask to gently hold open the back of the throat and abolish apnoic episodes. Where symptoms of residual sleepiness persist despite good CPAP therapy compliance and exclusion of apnoeic episodes. Even if you haven’t done some of these things recently, try to work out how they would have affected you.

Use the following scale to choose the most appropriate number for each situation:

- 0 = Would never do
- 1 = Right chance of doing
- 2 = Moderate chance of doing
- 3 = High chance of doing

Conclusion

Sleepiness is a known risk factor for many different types of accidents and OSAS is one example of a medical condition that can result in excessive daytime sleepiness.

Little data exist on the number of accidents that occur in the home or the workplace that may be attributable to OSAS, but it is likely that sleepy individuals will be more prone. Most of the available evidence concerns car drivers and confirms that there is a significantly increased risk of involvement in a road traffic accident of up to seven times for patients with untreated OSAS. Approximately 80% of people with OSAS are not recognised and not treated, so are at risk of having an accident. However, OSAS can be identified, assessed and treated effectively, leading to a reduction in the risk of involvement in any accident or incident. Increasing awareness of problems related to sleepiness and sleep disorders among the public and healthcare professionals will help to prevent accidents waiting to happen.

References